Differentiation 2

1 Sketch
$$y = x^3 - 2x^2 - 8x$$
.

- a) Find the equation for $\frac{dy}{dx}$
- b) Find the gradient when x = -2c) Find the gradient when x = 1.
- d) Find the coordinates of the points where $\frac{dy}{dx} = 1$
- e) Find the coordinates of the points where $\frac{dy}{dx} = 0$

Label these points on your graph.

2 sketch
$$y = x^2 - 8x + 12$$
.

- a) Find the equation for $\frac{dy}{dx}$
- b) Find the gradient when x = 2
- c) Find the gradient when x = 5.
- d) Find the coordinates of the points where $\frac{dy}{dx} = -2$
- Find the coordinates of the points where $\frac{dy}{dx} = 0$

Label these points on your graph

Complete the square and show that you get the same coordinates for the bottom of the curve as in the question above.

3 Sketch
$$y = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 6x$$
.

- a) Find the equation for $\frac{dy}{dx}$
- b) Find the gradient when x = -2 c) Find the gradient when x = 1.
- d) Find the x values of the points where $\frac{dy}{dx} = -2$
- Find the x values of the points where $\frac{dy}{dx} = 0$

Label these points on your graph

4 Sketch
$$f(x) = \frac{1}{3}x^3 + x^2 - 8x$$
.

- a) Find f'(x)
- b) Find the gradient when x = -2
- c) Find the gradient when x = 1.
- d) Find the coordinates of the points where f'(x) = 0
- e) Find f''(x) = 0
- When is f(x) an increasing function?

Show this information on your graph